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Abstract: In this article, we propose a new discrete bivariate distribution, called
the Bivariate Extended Poisson-Lindley (BEPL) distribution, suitable for modeling
overdispersed and correlated count data. The distribution is constructed within the
Sarmanov-Lee family by combining two Extended Poisson-Lindley distributions via
a multiplicative factor. We analyze its theoretical properties (moment-generating
function, various moments) and estimate its parameters using the maximum likeli-
hood method. The model’s performance is evaluated and compared to that of exist-
ing discrete bivariate models on two real-world datasets. The proposed distribution
exhibits great flexibility in capturing different types of dependencies (positive, zero,
or negative correlations), providing an effective tool for modeling correlated count
data.
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1. Introduction
The Poisson-Lindley distribution, defined in Equation (1.1), is considered one of

the main alternatives to the Poisson distribution for modeling overdispersed count
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data [11].

P (X = x) =
θ2(θ + x+ 2)

(θ + 1)x+3
, ∀x ∈ N, θ > 0. (1.1)

This preference is explained by the restrictive nature of the Poisson distribution
owing to its equidispersion property (mean = variance).

To enhance its capability for modeling overdispersed count data, several two-
parameter univariate Poisson-Lindley distributions have been proposed [1, 2]. Re-
cently, [8] proposed a new generalized Poisson-Lindley distribution called the beta
transformation of the Poisson-Lindley distribution. The beta transformation method,
originally developed by [3], introduces an additional parameter into discrete prob-
ability distributions. In this study, we refer to this new discrete distribution as the
extended Poisson-Lindley distribution.

Although univariate distributions are useful for modeling univariate count data,
they do not capture relationships between two dependent variables. In many practi-
cal applications, such as analyzing the interactions between the number of treated
cases and the number of deaths in an epidemic, or studying the scores of home
and away teams in a football match, it is important to consider the dependence
between these variables. Therefore, a bivariate approach is necessary to model
simultaneously these two phenomena and to better understand their correlation
[9].

Several discrete bivariate distributions have been constructed using the trivari-
ate reduction method [6]. The bivariate Poisson distribution (BP) is a classic exam-
ple; however, this approach can only model positive correlations [5]. An alternative
method, based on the product of two discrete marginal distributions weighted by
a multiplicative factor, has been proposed in the literature [10]. This method is
known as the Sarmanov-Lee family [13], which can model positive, zero, or negative
correlations [7, 9, 12, 15].

The objective of this study is to propose a bivariate version of the extended
Poisson-Lindley distribution. This new model is based on the Sarmanov-Lee method-
ology, which combines two marginal distributions using a multiplicative factor to
model their dependence. The rest of this paper is organized as follows. In Section
2, the univariate case of the extended Poisson-Lindley distribution is presented.
Section 3 proposes the bivariate extended Poisson-Lindley (BEPL) distribution
and several of its properties, including the moment-generating function, the mo-
ments and the correlation coefficient. Parameter estimation using the maximum
likelihood method is provided in Section 4. Section 5 examines the goodness-of-fit
of the BEPL distribution to real data compared with other discrete bivariate dis-
tributions.
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2. Method

2.1. Univariate Extended Poisson-Lindley (EPL) Distribution

LetX be a non-negative integer-valued random variable following a Poisson-Lindley
distribution with parameter θ > 0 and probability mass function (PMF) given by
(1.1).

Definition 2.1. The beta transformation Y of X is a non-negative integer-valued
random variable [8], whose probability mass function is given by

p(y) = P (Y = y) =


θ2 + 3θ + 1

β(θ + 1)3
, if y = 0

θ2(θ + y + 2)

β(θ + 1)y+1

(
β(θ + 1)(θ + y + 1)

θ + y + 2
− 1

)
, if y = 1, 2, . . .

(2.1)
where the parameter β is subject to the condition that

β > 1− θ2(θ + 2)

(θ + 1)3
and β ≥ θ + 3

(θ + 1)(θ + 2)
. (2.2)

In this paper, we say that Y follows the Univariate Extended Poisson-Lindley
(EPL) distribution, whereas in [8] it was referred to as the beta transformation of
the Poisson-Lindley distribution. Alternatively, the probability mass function (2.1)
can be written as follows

p(y) =

(
θ2 + 3θ + 1

β(θ + 1)3

)δ0(y) [θ2(θ + y + 2)

β(θ + 1)y+1

(
β(θ + 1)(θ + y + 1)

θ + y + 2
− 1

)]1−δ0(y)

∀y ∈ N, (2.3)

where δ0(y) is the indicator function at 0. The moment-generating function of the
random variable Y is given by;

MY (t) =
1

β
− (1− βet)θ2

β(θ + 1)

(θ + 2− et)

(θ + 1− et)2
. (2.4)

2.2. Methodology
Let ui(yi) (for i = 1, 2) and ξ be bounded non-constant functions and a real

number respectively [7, 13] satisfying the conditions

E[ui(Yi)] = 0 and 1 + ξ
2∏

i=1

ui(yi) ≥ 0 for i = 1, 2.
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Then, the function defined by

p(y1, y2) = p(y1)p(y2) [1 + ξu1(y1)u2(y2)] (2.5)

is a bivariate probability mass function (PMF), where p(y1) and p(y2) are marginal
mass functions. Inspired by this approach, several bivariate discrete distributions
have been proposed [7, 9, 12, 15].

Using the same approach, we propose a bivariate extended Poisson-Lindley
(BEPL) distribution, as in the case of the bivariate Poisson distribution proposed
in [7]. From (2.5), we obtain ui(yi) = e−yi − E[e−Yi ].

3. Results

3.1. Probability mass function of BEPL Distribution

Definition 3.1. Let Y1 and Y2 be two Extended Poisson-Lindley random variables
with parameters (θ1, β1) and (θ2, β2), respectively, and probability mass functions
p(y1) and p(y2). The random pair (Y1, Y2 ) has a joint distribution called the
Bivariate Extended Poisson-Lindley (BEPL) distribution with parameters (θ1, θ2,
β1, β2, ξ) whose probability mass function (PMF) is given by:

p(y1, y2) =

(
θ21 + 3θ1 + 1

β1(θ1 + 1)3

)δ0(y1)

×
[
θ21(θ1 + y1 + 2)

β1(θ1 + 1)y1+1

(
β1(θ1 + 1)(θ1 + y1 + 1)

θ1 + y1 + 2
− 1

)]1−δ0(y1)

×
(
θ22 + 3θ2 + 1

β2(θ2 + 1)3

)δ0(y2)

×
[
θ22(θ2 + y2 + 2)

β2(θ2 + 1)y2+1

(
β2(θ2 + 1)(θ2 + y2 + 1)

θ2 + y2 + 2
− 1

)]1−δ0(y2)

×
[
1 + ξ

(
e−y1 −D1

) (
e−y2 −D2

)]
, ∀(y1, y2) ∈ N2; (3.1)

where ξ ∈ R, θi > 0, and βi > 0 satisfy the conditions (2.2) ∀ i = 1, 2, and

Di = E
[
e−Yi

]
= MYi

(−1) =
1

βi

− (1− βie
−1)θ2i

βi(θi + 1)

(θi + 2− e−1)

(θi + 1− e−1)2
for i = 1, 2.

3.2. Moment-generating function

Proposition 3.1. The moment-generating function MY1,Y2 of the extended Poisson-
Lindley random pair (Y1, Y2) is given by

MY1,Y2(t1, t2) = MY1(t1)MY2(t2) + ξ [MY1(t1 − 1)−MY1(−1)MY1(t1)]

× [MY2(t2 − 1)−MY2(−1)MY2(t2)] ; (3.2)
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where, MYi
(ti) (i = 1, 2) is given by (2.4).

Proof. The moment-generating function is defined as

MY1,Y2(t1, t2) = E
[
et1Y1+t2Y2

]
=

∞∑
y1=0

∞∑
y2=0

et1y1+t2y2p(y1)p(y2)

×
[
1 + ξ

(
e−y1 −D1

) (
e−y2 −D2

)]
=

∞∑
y1=0

et1y1p(y1)
∞∑

y2=0

et2y2p(y2)

+ξ

(
∞∑

y1=0

e(t1−1)y1p(y1)− E
[
e−Y1

] ∞∑
y1=0

et1y1p(y1)

)

×

(
∞∑

y2=0

e(t2−1)y2p(y2)− E
[
e−Y2

] ∞∑
y2=0

et2y2p(y2)

)
= MY1(t1)MY2(t2) + ξ [MY1(t1 − 1)−MY1(−1)MY1(t1)]

× [MY2(t2 − 1)−MY2(−1)MY2(t2)] .

3.3. Features

The expected value and variance of Yi (i = 1, 2) are given by

E(Yi) = 1 + (1− β−1
i )

θi + 2

θi(θi + 1)
, i = 1, 2;

and

V (Yi) = σ2
i = (1− β−1

i )
θ3i + 4θ2i + 6θi + 2

θ2i (θi + 1)2
+

2β−1
i (θi + 2)

θi(θi + 1)

+(1− β−1
i )β−1

i

(
θi + 2

θi(θi + 1)

)2

, i = 1, 2.

respectively.

Remark 3.1. The formula we present for the variance of Yi differs slightly from
that given in [8]. Upon verification, it appears that the expression in [8] contains
an error in the final term. The version provided here has been rigorously derived
from the moment-generating function of the Extended Poisson-Lindley (EPL) dis-
tribution. This correction ensures theoretical consistency with the other properties
of the marginal distribution.



32 J. of Ramanujan Society of Mathematics and Mathematical Sciences

Proposition 3.2. The covariance between random variables Y1 and Y2 is given by

Cov(Y1, Y2) = ξ
[
M ′

Y1
(−1)−MY1(−1).E(Y1)

]
×
[
M ′

Y2
(−1)−MY2(−1).E(Y2)

]
,

(3.3)
where

M
′

Yi
(−1) = − θ2i

βi(θi + 1)(θi + 1− e−1)4
[
(θi + 1− e−1)2

(
−βie

−1(θi + 2− e−1)

−e−1 + βie
−2
)
− (1− βie

−1)(θi + 2− e−1)
(
−2e−1(θi + 1− e−1)

)]
is the value of the derivative of the moment generating function at t = −1 with
i = 1, 2.
Proof.

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2)

=
∑

y1,y2≥0

y1y2p(y1)p(y2)[
1 + ξ(e−y1 − E(e−Y1))(e−y2 − E(e−Y2))

]
− E(Y1)E(Y2)

=
∑

y1,y2≥0

y1y2p(y1)p(y2)− E(Y1)E(Y2)

+ξ
∑

y1,y2≥0

y1y2p(y1)p(y2)(e
−y1 − E(e−Y1))(e−y2 − E(e−Y2))

= ξ
∑

y1,y2≥0

y1y2p(y1)p(y2)(e
−y1 − E(e−Y1))(e−y2 − E(e−Y2))

= ξ

[∑
y1≥0

y1e
−y1p(y1)− E(e−Y1)

∑
y1≥0

y1p(y1)

]

×

[∑
y2≥0

y2e
−y2p(y2)− E(e−Y2)

∑
y2≥0

y2p(y2)

]
= ξ

[
M ′

Y1
(−1)−MY1(−1).E(Y1)

]
×
[
M ′

Y2
(−1)−MY2(−1).E(Y2)

]
.

Therefore, the correlation coefficient of Y1 and Y2 is:

ρY1Y2 =
ξ
[
M ′

Y1
(−1)−MY1(−1).E(Y1)

] [
M ′

Y2
(−1)−MY2(−1).E(Y2)

]
σ1σ2

.

If ξ = 0, the random variables Y1 and Y2 are independent.



Bivariate Extended Poisson-Lindley Distribution ... 33

4. Parameter Estimation
Consider an n-sample (y1 1, y2 1), (y1 2, y2 2),. . ., (y1n, y2n), of the pair of ran-

dom variables (Y1, Y2) of BEPL(Ω) where Ω =(θ1, θ2,β1,β2, ξ). The log-likelihood
function for the BEPL distribution is given by

l(θ1, β1, θ2, β2, ξ) =
n∑

i=1

δ0(y1i) log

(
θ21 + 3θ1 + 1

β1(θ1 + 1)3

)

+

n∑
i=1

(1− δ0(y1i))

[
log

(
θ21(θ1 + y1i + 2)

β1(θ1 + 1)y1i+1

)
+ log

(
β1(θ1 + 1)(θ1 + y1i + 1)

θ1 + y1i + 2
− 1

)]
+

n∑
i=1

δ0(y2i) log

(
θ22 + 3θ2 + 1

β2(θ2 + 1)3

)

+
n∑

i=1

(1− δ0(y2i))

[
log

(
θ22(θ2 + y2i + 2)

β2(θ2 + 1)y2i+1

)
+ log

(
β2(θ2 + 1)(θ2 + y2i + 1)

θ2 + y2i + 2
− 1

)]
+ log

[
1 + ξ

(
e−y1 −D1

) (
e−y2 −D2

)]
=

n∑
i=1

δ0(y1i) log

(
θ21 + 3θ1 + 1

β1(θ1 + 1)3

)

+

n∑
i=1

(1− δ0(y1i)) [2 log θ1 − log β1 − (y1i + 1) log(θ1 + 1)]

+

n∑
i=1

(1− δ0(y1i)) log [β1(θ1 + 1)(θ1 + y1i + 1)− (θ1 + y1i + 2)]

+

n∑
i=1

δ0(y2i) log

(
θ22 + 3θ2 + 1

β2(θ2 + 1)3

)

+
n∑

i=1

(1− δ0(y2i)) [2 log θ2 − log β2 − (y2i + 1) log(θ2 + 1)]

+
n∑

i=1

(1− δ0(y2i)) log [β2(θ2 + 1)(θ2 + y2i + 1)− (θ2 + y2i + 2)]

+

n∑
i=1

log
[
1 + ξ

(
e−y1i −D1

) (
e−y2i −D2

)]
. (4.1)

To estimate the unknown parameters Ω we take the partial derivatives with
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respect to each parameter, and then equate them to zero, that is,

∂l(Ω)

∂θ1
= 0,

∂l(Ω)

∂θ2
= 0,

∂l(Ω)

∂β1

= 0,
∂l(Ω)

∂β2

= 0 and
∂l(Ω)

∂ξ
= 0.

Because the above equations are not presented in closed forms, the numerical
method of the six-dimensional Nelder-Mead type procedure is used to solve this
system of equations. The solutions of the ML estimates of Ω using the R program
with the maxLik function in the maxLik R package [4].

5. Application
In this section we examine and compare the performance of our distribution

with those of the BPL [15] and BGPL [12] distributions on two real datasets.

Example 5.1. In this example, we considered a dataset concerning the number of
goals scored in the Italian football championship (Serie A) for the 1991-1992 season
[5]. The results of the different scores from the 306 matches in the championship
are presented in Table 1. The random variables Y1 and Y2 represent the number of
goals scored by the home team and the number of goals scored by the away team
respectively.

HH
HHHHY1

Y2 0 1 2 3 4 8 Total

0 38 23 13 0 1 0 75
1 41 58 12 10 3 0 124
2 28 19 10 3 0 1 61
3 6 11 4 4 1 0 26
4 7 5 1 0 1 0 14
5 2 2 2 0 0 0 6

Total 122 118 42 17 6 1 306

Table 1: Distribution of match scores [5]

These data show that 128 games were won by the home team, 67 games by the
away team and 111 games ended in draws, including 38 : 0−0, 58 : 1−1, 10 : 2−2,
4 : 3− 3 and 1 : 4− 4. This finding suggests that playing at home provided a sig-
nificant advantage for teams seeking to win matches during the 1991-1992 league
season.
Table 2 presents the descriptive statistics for the random variables Y1 and Y2 and
their correlation is included. The mean and standard deviation of the goals scored
by the home team were greater than those of the away team. Moreover, the
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Variance-to-Mean ratios for both the home and away teams are close to 1, suggest-
ing that the two variables are overdispersed. The empirical correlation coefficient
between Y1 and Y2 was 0.894. This indicated a strong positive correlation between
the two variables.

Statistiques descriptives Y1 Y2

Minimum 0 0
First quartile 1 0

Median 1 1
Mean 1.34 0.9314

Third quartile 2 1
Maximum 5 8

Standard deviation 1.182736 1.04577
Variance 1.398864 1.093635

Variance/Mean 1.04403 1.174219
Empirical correlation 0.894

Table 2: Descriptive statistics for the Italian Serie A football championship (1991-
1992 season)

Parameter estimates BPL BGPL BEPL

θ̂1 1.111090 1.540 1.777

θ̂2 1.554199 1.892 2.418

β̂1 12.056 1.806

β̂2 2.702 0.884

ξ̂ 1.092292 1.475 0.815
-l 883.347625 870.43 839.82

AIC 1772.70 1750.87 1689.64
BIC 1795.31 1769.48 1708.26
CAIC 1800.31 1774.48 1713.26

Table 3: Parameter estimates and goodness-of-fit for BPL, BGPL and BEPL dis-
tributions to data [5]

In Table 3, parameter estimates for the BPL, BGPL and BEPL distributions are
calculated using the r maxLik package. The dependence parameter ξ is positive for
all three distributions, which means that the correlation coefficients ρY1,Y2 for Y1

and Y2 are positive. This theoretical correlation coefficient for the dataset based
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on the BEPL distribution is ρ̂Y1,Y2 ≃ 0.075. This value reflects the weak positive
correlation between Y1 and Y2 in the BEPL distribution for this dataset. However,
the BEPL distribution provides a better fit to the data [5] than the other two
distributions because its AIC, BIC and CAIC are small.

Example 5.2. Here, we consider accident data from 122 experienced shunters,
where random variables Y1 and Y2 represent the number of accidents in 1937−1942
and 1943− 1947 [14]. The results are presented in Table 4.

H
HHH

HHY1

Y2 0 1 2 3 4 7 Total

0 21 13 4 2 0 0 40
1 18 14 5 1 0 1 39
2 8 10 4 3 1 0 26
3 2 1 2 2 1 0 8
4 1 4 1 0 0 0 6
5 0 1 0 1 0 0 2
6 0 0 1 0 0 0 1

Total 50 43 17 9 2 1 122

Table 4: Observed and expected number of accidents sustained by 122 experienced
shunters over 2 successive periods of time

Table 5 shows the descriptive statistics for random variables Y1 and Y2.

Statistiques descriptives Y1 Y2

Minimum 0 0
First quartile 0 0

Median 1 1
Mean 1.27 0.98

Third quartile 2 1
Maximum 6 7

Standard deviation 1.23 1.14
Variance 1.65 1.3

Variance/Mean 1.3 1.33
Empirical correlation 0.93

Table 5: Descriptive statistics for the number of accidents
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The results in Table 5 show a slight overdispersion (Variance/Mean > 1) for
both variables, and a strong empirical correlation (0.93) is observed, indicating
that accidents over the two periods are strongly linked.

Parameter estimates BPL BGPL BEPL

θ̂1 0.34 0.792 1.21

θ̂2 0.28 0.998 1.28

β̂1 - 0.45 0.68

β̂2 - 1.99 0.82

ξ̂ 0.99 1.58.10−5 0.999
-l 260.29 244.89 128.13

AIC 526.59 499.78 266.26
BIC 534.99 513.8 280.28
CAIC 537.99 518.8 285.28

Table 6: Parameter estimates and goodness-of-fit for BPL, BGPL and BEPL dis-
tributions to data [14]

The results in Table 6 show that the BEPL distribution provides a significantly
better fit than the BPL and BGPL distributions, with lower log-likelihood, AIC,
BIC and CAIC values. The estimation of the dependency parameter ξ̂ = 0.999
indicates a positive dependence between random variables Y1 and Y2. Therefore,
the estimate of the theoretical correlation under the BEPL distribution is ρ̂Y1,Y2 ≃
0.094 > 0. This value is significantly lower than that of the empirical correlation
(0.93), reflecting a weak but positive dependence between Y1 and Y2 under the
BEPL distribution.

6. Conclusion
In this article, we proposed a new discrete bivariate Sarmanov distribution,

called the Bivariate Extended Poisson-Lindley (BEPL) distribution, constructed
within the Sarmanov-Lee family. This approach allows for flexible modeling of
correlated and overdispersed count data, capturing positive, zero, and negative
dependencies. The main theoretical properties of the BEPL distribution, including
the moment-generating function, various marginal moments, and the correlation
coefficient, were derived and analyzed. The model parameters were estimated
using the maximum likelihood method, with numerical optimization based on the
Nelder-Mead algorithm, demonstrating practical feasibility despite the complexity
of the likelihood equations. Applications to two real-world datasets, the number
of goals scored during an Italian football season and workplace accidents among
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shunters, showed that the BEPL model provides a better fit compared to other
existing discrete bivariate distributions, particularly according to the AIC, BIC,
and CAIC criteria. However, the analyses also revealed certain limitations, notably
a slight underestimation of the theoretical correlation compared to the empirical
correlation observed in the datasets. This suggests interesting perspectives for
future research, such as by introducing additional parameters or exploring more
complex dependence structures within the Sarmanov-Lee family. In conclusion,
the BEPL distribution significantly contributes to the modeling of correlated count
data and provides a promising foundation for developing more flexible statistical
models suitable for a wide variety of practical applications.
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